Feathers – Part # 2 Final

 

Functions

Feathers insulate birds from water and cold temperatures. They may also be plucked to line the nest and provide insulation to the eggs and young. The individual feathers in the wings and tail play important roles in controlling flight. Some species have a crest of feathers on their heads. Although feathers are light, a bird’s plumage weighs two or three times more than its skeleton, since many bones are hollow and contain air sacs. Color patterns serve as camouflage against predators for birds in their habitats, and serve as camouflage for predators looking for a meal. As with fish, the top and bottom colors may be different, in order to provide camouflage during flight. Striking differences in feather patterns and colors are part of the sexual dimorphism of many bird species and are particularly important in selection of mating pairs. In some cases there are differences in the UV reflectivity of feathers across sexes even though no differences in color are noted in the visible range. The wing feathers of male club-winged manakins Machaeropterus deliciosus have special structures that are used to produce sounds by stridulation.

Feather structure detail - Feather without pigment

Feather structure detail – Feather without pigment

Some birds have a supply of powder down feathers which grow continuously, with small particles regularly breaking off from the ends of the barbules. These particles produce a powder that sifts through the feathers on the bird’s body and acts as a waterproofing agent and a feather conditioner. Powder down has evolved independently in several taxa and can be found in down as well as in pennaceous feathers. They may be scattered in plumage as in the pigeons and parrots or in localized patches on the breast, belly, or flanks, as in herons and frogmouths. Herons use their bill to break the powder down feathers and to spread them, while cockatoos may use their head as a powder puff to apply the powder. Waterproofing can be lost by exposure to emulsifying agents due to human pollution. Feathers can then become waterlogged, causing the bird to sink. It is also very difficult to clean and rescue birds whose feathers have been fouled by oil spills. The feathers of cormorants soak up water and help to reduce buoyancy, thereby allowing the birds to swim submerged.

Bristles are stiff, tapering feathers with a large rachis but few barbs. Rictal bristles are found around the eyes and bill. They may serve a similar purpose to eyelashes and vibrissae in mammals. Although there is as yet no clear evidence, it has been suggested that rictal bristles have sensory functions and may help insectivorous birds to capture prey. In one study, Willow Flycatchers (Empidonax traillii) were found to catch insects equally well before and after removal of the rictal bristles.

Grebes are peculiar in their habit of ingesting their own feathers and feeding them to their young. Observations on their diet of fish and the frequency of feather eating suggest that ingesting feathers, particularly down from their flanks, aids in forming easily ejectable pellets.

Coloration

The colors of feathers are produced by pigments, by microscopic structures that can refract, reflect, or scatter selected wavelengths of light, or by a combination of both.

Most feather pigments are melanins (brown and beige pheomelanins, black and grey eumelanins and carotenoids (red, yellow, orange); other pigments occur only in certain taxa – the yellow to red psittacofulvins (found in some parrots) and the red turacin and green turacoverdin (porphyrin pigments found only in turacos).

Structural coloration is involved in the production of blue colors, iridescence, most ultraviolet reflectance and in the enhancement of pigmentary colors. Structural iridescence has been reported[24] in fossil feathers dating back 40 million years. White feathers lack pigment and scatter light diffusely; albinism in birds is caused by defective pigment production, though structural coloration will not be affected (as can be seen, for example, in blue-and-white budgerigars).

The blues and bright greens of many parrots are produced by constructive interference of light reflecting from different layers of structures in feathers. In the case of green plumage, in addition to yellow, the specific feather structure involved is called by some the Dyck texture. Melanin is often involved in the absorption of light; in combination with a yellow pigment, it produces a dull olive-green.

Feathers resulting from different pigments

Feathers resulting from different pigments

In some birds, feather colors may be created, or altered, by secretions from the uropygial gland, also called the preen gland. The yellow bill colors of many hornbills are produced by such secretions. It has been suggested that there are other color differences that may be visible only in the ultraviolet region, but studies have failed to find evidence. The oil secretion from the uropygial gland may also have an inhibitory effect on feather bacteria.

A bird’s feathers undergo wear and tear and are replaced periodically during the bird’s life through molting. New feathers, known when developing as blood, or pin feathers, depending on the stage of growth, are formed through the same follicles from which the old ones were fledged. The presence of melanin in feathers increases their resistance to abrasion. One study notes that melanin based feathers were observed to degrade more quickly under bacterial action, even compared to non pigmented feathers from the same species, than those non pigmented or with carotenoid pigments. However, another study the same year compared the action of bacteria on pigmentations of two song sparrow species and observed that the darker pigmented feathers were more resistant; the authors cited other research also published in 2004 that stated increased melanin provided greater resistance. They observed that the greater resistance of the darker birds confirmed Gloger’s rule. The evolution of coloration is based on sexual selection, and it has been suggested that carotenoid-based pigments may have evolved; these pigments are likely to be honest signals of fitness because they are derived from special diets, or because carotenoids are required for immune function.

© Wikipedia – photographs © HJ Ruiz – Avian101

Advertisements

8 thoughts on “Feathers – Part # 2 Final

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s